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Abstract

Consider a collisionless, homogeneous plasma in which the electron velocity distri-
bution is a bi-Maxwellian with T, < T)|, where the subscripts refer to directions relative
to the background magnetic field B,. If this anisotropy is sufficiently large and the elec-
tron () is sufficiently greater than one, linear dispersion theory predicts that a cyclotron
resonant electron firehose instability is excited at propagation oblique to B, with growth
rates less than the electron cyclotron frequency [€2.| and zero real frequency. This theory
at constant maximum growth rate yields threshold conditions for this growing mode of the
form 1 —T,./T). = Sé/,B||ZIe, where the two fitting parameters satisfy 1 < S, < 2 and
a, < 1.0over 2.0 < f. < 25.0. The first particle-in-cell computer simulations of the reso-
nant electron firehose instability are described here. These simulations show that enhanced
magnetic field fluctuations reach a maximum value of [§B|?/B2 which increases with ).
These enhanced fields scatter the electrons, reducing their anisotropy approximately to a
linear theory threshold condition and yielding a dimensionless scattering rate which in-
creases as fJj increases. These results are consistent with the general principle that, for a
given plasma species, scattering by enhanced fluctuations from anisotropy-driven electro-
magnetic instabilities acts to make the velocity distribution more nearly isotropic as the

) of that species increases.



I. Introduction

Electron and ion velocity distributions in collisionless space plasmas are often ob-
served to be more isotropic than would be predicted by fluid models of charged particle
response to large-scale changes in magnetic and electric fields. For example, simple adia-
batic theory predicts that solar wind electrons and ions should develop strong Tj >> T
anisotropies as they stream outward in the decreasing interplanetary magnetic field (The
subscripts represent directions relative to the background magnetic field B,.). Spacecraft
observations have shown that velocity distributions of the hot, collisionless components of
both ion and electrons are much less anisotropic than predicted by such theories.

A scenario has been proposed to explain these observations. In this scenario a strong
anisotropy on the electrons or an ion component in a finite 3, collisionless plasma excites
one or more electromagnetic kinetic instabilities. The growing modes lead to enhanced
electromagnetic fluctuations; because these waves are resonant with the charged particle
species driving the instability, they yield strong scattering of these particles, thereby reduc-
ing and imposing an observable constraint on the driving anisotropy. In this framework,
we have combined computer simulations and spacecraft observations to argue that the
proton cyclotron anisotropy instability constrains the T'1,,/Tj, > 1 anisotropy [Reference
1 and citations therein| and that the proton resonant firehose instability imposes a bound
on Tj,/T1, when that quantity is greater than unity.>®> An important general conclusion
of our research has been that the larger the j; (= 87rnjkBT||j/B§ for the jth species or
component) the more effective is the scattering and the more stringent is the constraint
which is imposed on the anisotropy. There has been less progress in demonstrating the
validity of this scenario as applied to the electron velocity distributions of observed space
plasmas.

This manuscript describes theoretical and computational studies of electromagnetic
plasma instabilities which are driven by T Le/T”e < 1 (Subscript e denotes electrons).

Although instabilities excited by T1./Tj. > 1 have been frequently simulated,*~' only
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Messmer'! has published particle-in-cell simulations of modes driven by the opposite elec-
tron anisotropy.

For both the linear theory and particle-in-cell simulations described here, we assume
a homogeneous, magnetized, collisionless plasma; we also assume the electrons are repre-
sented by a single component bi-Maxwellian velocity distribution. We admit that this is an
idealized distribution, as electrons observed in the magnetosphere and solar wind usually
exhibit two or more components and in the solar wind bear a heat flux. Nevertheless, it is
appropriate to seek an understanding of the consequences of instabilities which arise in this
model to establish a baseline before pursuing studies of more realistic but more complex
electron velocity distributions.

As we explain in Section II below, linear dispersion theory for the single bi-
Maxwellian electron distribution model predicts that two, distinct electron firehose insta-
bilities can be excited for sufficiently large values of 1 —T' . /T). and (.. Linear dispersion
theory further predicts that the threshold condition for each of these instabilities can be
written as

Ty S’

1 =< 1
T||€ ,6||:e ( )

where the two primed quantities are fitting parameters with 1 < S, < 2 and o/ < 1.0.
Particle-in-cell simulations at k x B, = 0 have shown that wave-particle interactions by
the enhanced fluctuations reduce this anisotropy and thereby stabilize this growing mode.!!
However, simulations have not yet demonstrated whether Equation (1) represents an ob-

1.12 used linear theory and test-particle computations to

servable constraint. Paesold et a
argue that the electron firehose instability may play a role in the acceleration and enrich-
ment of 3He during impulsive solar flares.

For both the linear theory and the simulations described here, we consider two
species: ions (denoted by subscript i) and electrons. For the jth species we define
B = 87rnjkBT||j/Bg; the plasma frequency, w; = ,/47rnje§/mj; the cyclotron fre-
quency, Q; = e;B,/mjc; and the thermal speed, v; = /kpTj;/m;. The Alfvén speed
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isva = B,/v/4wn;m;. The complex frequency is w = w, + 47, the Landau resonance factor
of the jth species is (; = w/ V2 kj|v;, and the cyclotron resonance factors of the jth species
are C;E = (w £ Q;)/V2/kj|v;. The choice of coordinate system is such that both B, and
the wavevector k lie in the z-z plane. We define 6 as the angle between k and B, so that
k- ]30 = cos(f). Subscript m denotes a quantity corresponding to the maximum growth
rate vy, /4; thus ky, and 6,, correspond to the wavevector which yields the largest value

of v for a given set of dimensionless plasma parameters.

I1. Linear Theory

This section describes properties of two electromagnetic instabilities driven by
T . /T”6 < 1 as derived from the linear Vlasov dispersion equation in a homogeneous,
collisionless, magnetized plasma. We assumed that the ions are represented as an isotropic
Maxwellian, that the electrons may be represented by a single anisotropic bi-Maxwellian
velocity distribution, that the average relative drift between the electrons and ions is zero,
and that charge neutrality n, = n; holds. In this case the dispersion equation is derived
and discussed in Chapter 7 of Reference 13. We assumed the following dimensionless pa-
rameters for solutions of this equation: m;/me = 1836, va/c = 1.0 x 107%, Tye/Tyi = 1
and, to isolate the consequences of the electron anisotropy, T'1;/T); = 1.

If (1-T../T).) and B, are both sufficiently large, an electron anisotropy instability

= 0716 with w, # 0 and relatively weak growth rates (v,,/Q; < 1).

arises at k x B,
Because both species velocity distributions are symmetric about v = 0, both right- and
left-propagating instabilities arise with the same growth rates and the same left-hand
circular polarization. The electrons are nonresonant (|(F| ~ 3), whereas the ions satisfy
I¢E| ~ 0.17 We call this the “nonresonant electron firehose instability.” We calculated
numerical solutions of the linear Vlasov dispersion equation at k x B, = 0 for two different

values of the maximum growth rate; we then used a numerical least-squares fit to the results

to obtain an expression for the threshold condition. Over 2.0 < 3, < 50.0 we found that
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the threshold condition satisfies Equation (1) with
S/=170 and «a,=099 at  7,/Q; =0.01

S'=162 and o, =094 at  yp/Q =0.10

The latter case is plotted as the solid dots and the solid line in Figure 1.

Again, if (1-T./Tj.) and ). are both sufficiently large, a different instability arises
at propagation oblique to the magnetic field with w, = 0 and €; < v < |[Q].17'® Figure
2 illustrates the growth rate of this mode maximized with respect to wavenumber as a
function of # for both the nonresonant instability and this second mode which we call the
“resonant electron firehose instability.” We chose this name because, by comparison with
the k x B, = 0 mode, at maximum growth the electrons have a relatively strong cyclotron
resonance with [(F| ~ 2. At 7., the ion cyclotron resonance factor satisfies || << 1 and
the Landau resonance of course corresponds to Re(¢.) = Re(¢;) = 0.

Figure 2 (compare with the figures of References 17 and 18) shows that the maximum
growth rate of the nonresonant mode remains smaller than €2; at oblique propagation, but
that the maximum growth rate of the resonant electron mode becomes much larger than
the ion cyclotron frequency as 6 increases.

This suggests that the resonant electron instability has a lower threshold than the
nonresonant mode,'® and a detailed calculation illustrated in Figure 1 confirms this. We
found that the resonant electron instability threshold also satisfies Equation (1) but with
fitting parameters over 2.0 < ), < 25.0 as described in Table I. The results from this
table are based on m;/m. = 1836, but we have also carried out a similar set of threshold
calculations for m;/m. = 100 for use in the simulations described in the next section and
have found essentially the same results. Thus we conclude that the linear theory properties
of the resonant firehose instability are essentially independent of m;/m, at sufficiently large
mass ratios.

Figure 1 implies that, unless some physical property of the system restricts mode
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propagation to nearly parallel or antiparallel to B, the resonant firehose instability should
be the dominant mode. Therefore our simulations described in the following section address
this instability.

The zero real frequency of the resonant electron firehose mode invites comparison
with the electron mirror instability which also has w, = 0 but is driven by T Le/T”e >
1. Both modes have maximum growth rate at propagation oblique to B, with, at suffi-
ciently great anisotropies, ; << v, < |Q¢|. However, electrons do not have a cyclotron
resonance with the electron mirror instability, as [(F| > 5 for this mode. In addition the
electron mirror instability is, like its ion-driven counterpart, predominantly compressive;
that is, [B)|* >> [0B.|?, whereas the resonant electron firehose instability fluctuations
are predominantly transverse to Bo: [0B1|> >> [6B)|?>. Because the latter instability
is both cyclotron resonant with electrons and predominantly transverse, it is likely that
pitch-angle scattering is the primary mechanism for anisotropy reduction by enhanced

fluctuations from this mode.

I1I. Particle-in-cell simulations

The particle-in-cell simulation code used here is described in Reference 10. The code
is a two-and-one-half dimensional; that is, all three velocity dimensions are computed, but
spatial variations are permitted only in the z-z plane. For all simulations reported here, the
following initial parameters were used: m;/m. = 100, va/c = 0.00707, T ;/T); = 1, and
T)e/T); = 1. We used 400 electrons and 400 ions per cell in each run, and a grid spacing of
Ax = Az = \p, the Debye wavelength. Because the resonant electron firehose instability
has the far larger growth rate in the model we assumed, our simulation coordinates were
chosen to capture the strongly oblique character of this unstable mode. Thus we chose the
x-direction to be parallel to the wavevector at maximum growth rate, and the simulation
length in this direction, L,, to be equal to four times the wavelength of the fastest growing

mode. Because of computational limitations, we chose only three cells in the z-direction,
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so that, in effect, our simulations represent spatial variations in only one dimension.

We first carried out a representative simulation of the resonant electron firehose
instability, Run F-257 with initial parameters as stated in Table II. Selected results from
this computation are illustrated in Figure 3 which shows that the fluctuating magnetic fields
grow at a rate close to that predicted by linear theory, and both the electron anisotropy
and the f). are reduced at a much slower rate. The ion response is uninteresting, with no
significant change either in the overall ion temperature or in T ;/7j; for the duration of
the simulation; thus, we do not illustrate any ion quantities here. Throughout the growth,
saturation, and subsequent decay of the fields, |§B,|? << |6B,|* << |§B,|?% that is, the
primary contribution to |§ B|?/B2 illustrated in Figure 3 is due to the out-of-the-simulation-
plane component of the fluctuating magnetic field. Although they are not illustrated here,
we have also plotted contours of § B, at several times during the simulation. These plots
clearly demonstrate that the fluctuating fields during the growth phase are due to a zero
frequency mode, consistent with the predictions of linear theory. Fourier plots of individual
mode amplitudes as functions of time demonstrate the expected quasilinear response; that
is, the n = 4 mode usually has the fastest initial growth and the earliest saturation, while
the n = 3 and n = 2 modes display successively slower growth and later saturation times.
The two peaks in Figure 3a correspond to saturation of the n = 4 and n = 3 modes,
respectively.

We examined the reduced electron velocity distributions at several times during the
representative simulation. We find that all three of the f.(v;) remain approximately bi-
Maxwellian throughout the computation, even as the anisotropy is substantially reduced.
Although our limited box size allows only a few modes to grow to large amplitude, the fast
growth rate of the waves leads to relatively broad cyclotron and Landau resonances. This
permits electrons with a broad range of v| to be scattered and allows the bi-Maxwellian
character of the velocity distribution to be maintained.

We also examined the magnetic fluctuation distributions for 6 B, and d B, during Run



F-257. The magnetic fluctuations were taken as spatial differences; that is, 6B;(dz,t) =
Bj(x+d0z,t) — Bj(x,t) and the distributions were computed by binning the values of B;
over all the cells of the simulation. We examined magnetic fluctuation distributions at
seven different spatial separations: dz w./c = 10, 20, 30, 40, 50, 60 and 70, and four times:
|Qe|t = 10, 20, 30 and 40. The f(dB,) were Gaussian-like for most separations and most
times, with the greatest departures from a Gaussian at |Qe|t = 20 and 0z we/c = 40 and
50. In contrast, f(dB,) exhibited significant departures from Gaussian shapes as early as
|Q|t = 10 and showed the strongest non-Gaussian profiles at ||t = 30, the approximate
time of saturation. Figure 4 illustrates the f(0B,) at éz w./c = 30 and several times
during Run F-257. The bimodal distribution at |2t = 30 corresponds to the dominance
of a single mode in the system at this time which of course is the opposite condition from
that of turbulence or many waves with random relative phases which typically leads to a
Gaussian-like distribution.

We next carried out an ensemble of simulations of the resonant electron firehose
instability. We chose four initial values of ., used linear theory to determine the corre-
sponding electron anisotropies which yielded initial 7,,/|Q.| = 0.20, and chose L, values
to match four times the wavelength of the fastest growing mode in each case. We then ran
the simulations to |Q.|t = 100 using the initial parameters described in Table II. Figure 5
provides a graphical summary, plotting the electron anisotropy versus j). at several times
during each simulation of the ensemble. In all four cases, scattering by the enhanced fluc-
tuations reduced the electron anisotropy to the approximate instability threshold condition
of ym /|| = 0.10 at saturation. After saturation the scattering rate became much weaker,
but there was a continuing trend toward smaller anisotropies and, at the larger values of
Bjje, toward conditions of still weaker growth. Simulations in larger systems would, we
believe, show the post-saturation excitation of longer wavelength modes with still smaller
growth rates; it is likely that the consequent scattering would further reduce the electron

anisotropies to threshold conditions of still weaker 7, /||



Table III summarizes additional results from the ensemble of simulations, providing
the maximum values of the fluctuating magnetic field energy density and the electron
anisotropy scattering rate v, for each computation. For a fixed initial value of 7,, /|| the
maximum |§B|?/B2 increases with increasing Bjie; this is the same type of scaling as was
obtained for the whistler anisotropy instability driven by T', /T”e > 1.10 To estimate the

maximum electron scattering rate we assumed that the anisotropy satisfies

1-— = A exp(—vet) (2)

and then fit Equation (2) to a computed anisotropy versus time plot over 15 < [Q.|t <
25 which encompasses the times of fastest scattering for each run. Table III reports the
resulting values of v./|Q.| as the maximum electron scattering rate for a given set of
initial parameters. Here v,/|().| increases as 3. becomes larger; this is opposite to the 3.
dependence found by Nishimura et al.!? for the scattering rate due to whistler anisotropy

instability.

IV. Conclusions

We used linear Vlasov theory to compare the properties of two growing modes excited
by T ¢/Tje < 1: the nonresonant electron firehose instability with w, # 0 and v, < Q; at
k x B, = 0, and the resonant electron instability with w, = 0 and ~,, < |Q.| at propagation
only oblique to B,. For all parameters we considered, the latter mode has the far larger
growth rate, and the lower anisotropy threshold with the form of Equation (1). Therefore,
we carried out a series of particle-in-cell simulations addressing the latter mode. The
results described here are, to the best of our knowledge, the first report of simulations of
the resonant electron firehose instability.

We draw several conclusions from our simulations. (1) Enhanced field fluctuations ex-
cited by the resonant electron firehose instability increase as 3|, increases above unity. (2)

These enhanced fluctuations scatter the electrons, thereby reducing their anisotropy; this
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scattering preserves the bi-Maxwellian character of the electron velocity distribution. (3)
For a fixed maximum growth rate the maximum value of the dimensionless anisotropy scat-
tering rate increases as 3|, increases. (4) This scattering reduces the electron anisotropy to
an instability threshold condition of weaker growth. The implication of this last conclusion
is that the resonant electron firehose instability has the potential to impose a 3-dependent
upper bound on the electron anisotropy, and that it would be a useful exercise to seek such
a constraint in observations from the solar wind and magnetosphere.

We have also examined magnetic fluctuation distributions due to the resonant elec-
tron firehose instability. We find that near the maximum amplitude of the fluctuating
fields, the f(6B,) are strongly non-Gaussian due to the predominance of a few, coher-
ent modes in the system. We suggest that relatively short-wavelength electromagnetic
instabilities driven by electron and ion anisotropies may contribute to recent solar wind
observations that magnetic fluctuation distributions exhibit an increasing departure from
the Gaussian as frequencies (and wavenumbers) increase.!®

Our simulations were carried out in a collisionless, homogeneous plasma model. How-
ever, because the resonant instability wavelength at maximum growth rate scales approx-
imately as the thermal electron gyroradius, relatively long wavelength inhomogeneities
should not inhibit the growth of this mode.

In our opinion the major limitation on the application of this instability to space
plasmas is not stabilization by inhomogeneities, but rather the lack of observations of the
idealized, single bi-Maxwellian electron distribution used in our theory and simulations.
For example, electron velocity distributions observed in the solar wind are often charac-
terized in terms of three distinct components: a cool, relatively isotropic core, a tenuous,
hot, strongly anisotropic strahl, and a still more tenuous, hot, relatively isotropic halo.2°
Although the core and halo typically can be approximated by velocity distributions such
as used here, the strahl is a unidirectional, highly focused distribution which may not

be subject to a bi-Maxwellian representation. A natural extension of this work would
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be to examine the linear theory and simulation properties of firehose-like and heat-flux
instabilities driven by such multi-component velocity distributions.

Nevertheless, we believe that the computations described here provide a general
principle for comparison against future simulations of instabilities and future observations.
This principle applies to instabilities driven by both electron and ion anisotropies, and to
both T /T > 1 and T\ /T < 1. This principle may be stated as: For a given plasma
species, scattering by enhanced fluctuations from anisotropy-driven electromagnetic insta-
bilities acts to make the velocity distribution more nearly isotropic as the §) of that species
increases. This is consistent with some solar wind electron observations. These include the
Bjje-dependent upper bound on T, /T evident in the analysis of halo electrons measured
from the Ulysses spacecraft?' and measurements from the Wind spacecraft showing that

suprathermal electrons become more nearly isotropic as the electron 3 increases.??
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Table I. Linear Theory Results: Fitting Parameters for Equation (1)

at Thresholds for Resonant Electron Firehose Instability

Y/ | e Se o

0.001 1.29 0.97
0.010 1.23 0.88
0.025 1.22 0.79
0.050 1.26 0.71
0.10 1.32 0.61
0.20 1.36 0.47
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Table II. Initial Parameters for the Ensemble of Simulations

Run Ble Tie/Tie  Ym/IQe] kmc/we Om Lywe/c
(degrees)

F-252 2.5 0.10 0.20 1.32 77.0 19.1

F-255 5.1 0.34 0.21 0.79 75.0 31.8

F-257 7.7 0.46 0.21 0.65 75.0 38.9

F-250 9.9 0.55 0.19 0.57 75.5 43.6
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Table ITI. Summary Results from the Ensemble of Simulations

Run Initial Initial |Qet of Maximum Maximum
Bje T /T maximum |6B|?/ B2 Ve/|Qe]
fields
F-252 2.5 0.10 25 0.016 0.003
F-255 5.1 0.34 27 0.048 0.011
F-257 7.7 0.46 30 0.067 0.015
F-250 9.9 0.55 30 0.077 0.016
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Figure Captions

Figure 1. Linear theory results: Electron anisotropies at thresholds of two instabil-
ities as functions of parallel G, for two different values of the maximum instability growth
rate. In each case the discrete symbols represent linear theory results; the lines are least-
squares fits to these points. The solid line corresponds to the nonresonant electron firehose
instability at v,,/; = 0.10 and the dashed line represents the ~,,/|2| = 0.001 threshold

of the resonant electron firehose instability. Parameters are as stated in Section II.

Figure 2. Linear theory results: The growth rates maximized over wavenumber and
the corresponding wavenumbers as functions of the direction of propagation for both the
nonresonant electron firehose instability with w, # 0 and the resonant electron firehose
instability with w, = 0. Parameters are as stated in Section II with, in addition, 3, = 5.0

and T ./T). = 0.60.

Figure 3. Results from the simulation Run F-257: (a) the fluctuating magnetic field
energy density, (b) the electron anisotropy and (c) the electron parallel 5 as functions of
time. The dashed line in panel (a) represents the fluctuating magnetic field energy density

growing at the initial maximum growth rate of v,,/|Q| = 0.20.

Figure 4. Results from the simulation Run F-257: The magnetic fluctuation distri-

butions of B, at four times as labeled.

Figure 5. Results from the ensemble of simulations. For each run with initial
conditions as described in Table II, the electron anisotropy is plotted as a function of
Bjje- Initial conditions are plotted as crosses, conditions at saturation of the fluctuating
magnetic fields are plotted as open circles, and conditions at |Q.|t = 50, 75 and 100 are
plotted as solid dots. The dashed line represents the linear theory threshold condition for

the resonant electron firehose instability at v,, /|| = 0.10.
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